Introduction

Experiments

Market Design for Land Trade: Evidence from Uganda and Kenya

Gharad Bryan Jonathan de Quidt Mariajose Silva Vargas Tom Wilkening Nitin Yadav

Motivation

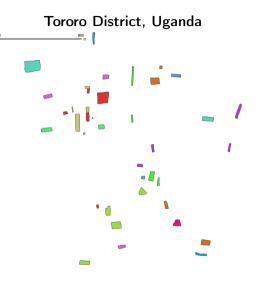
• Farms in many low-income countries are small, fragmented, and unproductive.

Gollin et al. (2002, 2004); Adamopoulos & Restuccia (2014); Deininger et al. (2014); Ali et al. (2015); Lowder et al. (2016); Gollin (2018); Suri & Udry (2022)

• Quantitative estimates suggest 20-360% returns to land reallocation.

Adamopoulos & Restuccia (2014, 2020); Deininger et al. (2014); Restuccia & Santaeulalia-Llopis (2017); Foster & Rosenzweig (2017); Gollin & Udry (2021), Aragon et al. (2021); Britos et al. (2020); Adamopoulos et al. (2021); Bolhuis et al. (2021).

• Conventional land markets are (very) slow to realize them. Coase theorem fails.


FAO (2003); Demetriou (2014); Bleakley & Ferrie (2014), Milgrom (2017), Smith (2019), Bartels et al. (2020); Chen et al. (2021)

• Can we do better with better market design?

Introduction

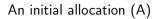
Kisoro District, Uganda

Our approach

- Set up a lab-in-the-field game that models the land trade problem.
- Show that farmers agree with the model's key properties.
- Demonstrate that "status quo" markets are not efficient.
- Demonstrate the potential of two interventions.
 - Simple: market centralization
 - Complex: a computerized "package exchange"

Introduction

Experiments


The model

Consolidation: contiguous farms more profitable than fragmented farms

Sorting: Better farmers produce more with better land

Span of control: Decreasing returns to total farm size

+ private information about own values

9 9 9 Ø Ø

An efficient allocation (B)

Inequality

17	18	18	18	13	13
17	15	15	15	13	14
17	16	16	16	14	14
11	11	11	10	10	8
7	12	12	12	10	8
7	7	9	9	9	8
6	6	5	2	4	3
6	1	5	2	4	3
1	1	5	2	4	3

Inequality

The talk in a nutshell

- Model + initial allocation are a reasonable representation of status quo
- Getting to efficiency is hard in free-form trade
- Interventions (Centralization & Package Exchange) substantially increase efficiency
- ... by solving different parts of the problem
- Both **decrease** inequality

Why market design?

• Many governments enacted centrally-planned land consolidation programs:

E.g. France (18th-20th C), Sweden (18th-19th C), Denmark (19th-20th C), Germany (20th C). FAO (2003); Demetriou (2014); Hartvigsen (2014) discusses 25 countries.

- Daunting in low-information, low state capacity, potentially coercive settings.
- Markets are voluntary, participatory mechanisms that leverage local information.
- Many success stories, allocating medical residencies, schooling, donor organs, radio spectrum, microcredit, sanitation

Why lab experiments?

- Engineering approach: need to tailor tools to realistic participants Roth (2002); Milgrom (2009); Duflo (2017)
- Land issues are incredibly sensitive.
- Can measure outcomes against known benchmarks.

Abstract from property rights issues

de Soto (2000); Field (2007); Galiani & Schargrodsky (2010, 2011); Deininger et al. (2011); Ali et al. (2011, 2015); Libecap & Lueck (2011); de Janvry et al. (2015); Lawry et al. (2017); Chen et al. (2017); Agyei-Holmes et al. (2020)

• Related experiments: Tanaka (2007), Gáfaro & Mantilla (2020)

Outline

Introduction

2 Validating the model

8 Why is efficient trade hard?

4 Experiments

Experiment 1: free-form versus centralized trade Experiment 2: computerized package exchanges

5 Inequality

6 Additional results

The Constraints Survey

- 1,404 land-owning farmers in Masaka, Uganda (mostly coffee, maize, beans)
- Sample selection: pre-screened on potential interest in playing trading games over 3 weeks. Similar on observables to same-region LSMS.
- Active in the land market:
 - 10% bought/sold, 20% rented in/out in last 12 months.
 - 45% of cultivated land acquired on the market.
- Questions on:
 - Fragmentation
 - Heterogeneity & complementarities
 - Returns to scale
 - Information structure
 - Land market activity & market institutions
 - Culture & attitudes to trade
 - Beliefs about impact of different reforms

Validating the model

Consolidation: contiguous farms more profitable than fragmented farms

Sorting: Better farmers produce more with better land

Span of control: Decreasing returns to total farm size

+ private information about own values

Validating the model

Consolidation: contiguous farms more profitable than fragmented farms

• Costs and benefits of fragmentation long debated

McCloskey (1972); Blarel et al. (1992); Deininger et al. (2014); Ali et al. (2015); Foster & Rosenzweig (2017)

Inequality

• Largely viewed within the technical literature as a problem to be eliminated

FAO (2003), Demetriou (2014), Hartvigsen (2014)

Our data:

- 64% have fragmented farms. 20–40 mins walk between plots
- 25% tried to consolidate; of which 1/2 succeeded
- 91% prefer 1×2 acre to 2×1 acre
- 88% believe consolidation increases profits
- Most point to travel time, labor management & cost

Inequality

Validating the model

Sorting: Better farmers produce more with better land

• Taken as given in the quantitative literature

Our data:

- 99% think there is ability heterogeneity in the village
- Guess best farmers produce pprox 3imes worst farmers
- 99% think there is land quality heterogeneity
- 99% think ability and quality are complements

Validating the model

Span of control: Decreasing returns to total farm size

• Largely taken as given in the quantitative literature

Inequality

• Helps rationalize existence of many producers

Our data:

- 40% think they could not farm more than their current endowment
- 99% think there is heterogeneity in span of control (7:1 best/worst ratio)

Validating the model

• Ability is (partially) observable 98% say "everyone knows who the best farmers are"

Inequality

But many sources of unobservable heterogeneity in WTA/WTP

Important: no concern about adverse selection (lemons)

- 3% think plot quality is difficult to assess
- 94% know how to assess quality of others' plots

 $+\ {\rm private}$ information about own values

Outline

1 Introduction

2 Validating the model

3 Why is efficient trade hard?

4 Experiments

Experiment 1: free-form versus centralized trade Experiment 2: computerized package exchanges

5 Inequality

6 Additional results

Why is land trade hard?

Farmer 16 wants 3 consolidated plots

8	5	17	6	7	13
3	10	14	10	8	8
16	16	9	16	3	14

Thin markets

- Myerson & Satterthwaite (1983) \Rightarrow efficient trades may not take place
- 2 Exposure risk

Goeree & Lindsay (2017)

- Buy then sell? May get held up, or stuck with 4 plots.
- Sell then buy? May get held up, or stuck with 2 plots.

3 Transaction costs/complexity

Milgrom (2017)

- Chains of transactions hard to find & implement
- **4** Liquidity constraints
 - Can't buy without selling first.

Outline

Introduction

- 2 Validating the model
- **3** Why is efficient trade hard?

4 Experiments

Experiment 1: free-form versus centralized trade Experiment 2: computerized package exchanges

5 Inequality

6 Additional results

120.000

90,000

60.000

+ 12.000

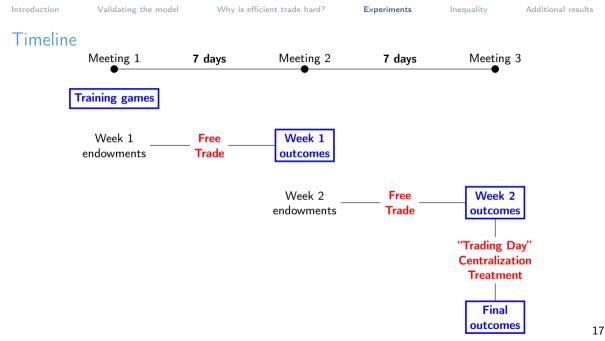
Enamba vange vo'muzanvo: 1

ØØØØ

222

ØØ

m . H



Inequality

Repapa sityadalah	Hyspa sityakké	Hyspa sityaddda	Hyapa sityadalala	Riyapa siliya hilala	Repape stepablele	
****	8888	8888	****	****	8888	
Etaaka 65	Etaaka 66	Etaaka 67	Daaka 65	Daaka 69	Etaaka 70	
Namjini syasoda 7	Neryini symoola 14	Natyini syanaka 12	Naryini eyasesha 18	Natyini syaweka 18	Nanyini nyaunsha K	
Repapa sityadalah	lityspa sityaddala	lbyspa sibyeddda	Hyapa sityadalah	Rhyapa siliyaddala	Repape stepabliste	
****	8888	****	****	****	8888	
Etaaka 57	Daaka 58	Etaaka 59	Daaka 60	Etaaka 61	Etaaka 62	
Nampini symoolaa 3	Noryini symmetra 1	Natyini eyeneda 18	Naryini ryawaka 3	Nargini syautoka 8	Nanyini epasesha k	
Repays altyndalada	lleyspa sileyadılıda	Hyspa silyadələlər	Ryapa sityadalah	Ryapashyahiala	Repape obpatible	
****	2222	2222	2222	8888	2222	
Etaaka 49	Etaaka 50	Etaaka 51	Daaka 52	Etaaka 53	Etaaka 54	
Nampini symoulus 7	Navyini symmetra 1	Natyini syawaka 13	Naryini ryawaka 2	Naryini eyeundea 13	Nanyini symetha 3	
Ryapa silyaddda	lbyspa sibyaddafa	Byspa sityaddala	Ryapa sityadalah	Ryapa sityaddala	Reyapa obyaddala	
***	666	***	666	***	666	
Etaaka 41	Etaaka 42	Etaaka 43	Daaka 44	Daaka 45	Etaaka 46	
Namjini syanosha 14	Noryini symmetra 1	Natyini eyeseda 13	Nergini rywarka X	Naryini eyeundia 10	Nanyini syasosha 13	
Ebyapa sibyadılda	Hyspa sibyaddafa	Byspa sityaddda	Ryapa sityadalah	Ryapa sityaddala	Riyapa uliyaddala	
***	888	222	666	***	666	
Etaaka 33	Etaaka 34	Etaaka 35	Daaka 36	Daaka 37	Daaka 38	
Namjini nyasosha 15	Nevyisi syasoha 18	Natyini syawaka 17	Navyini vymotka il	Naryini syasoha 4	Navyini syasoda 19	
Ebyapa sibyadılda	Hyspa sibyaddala	Hyspa sibyeddda	Byapa silyaddala	Ebyapa sibyaddala	Hyapa shyaddala	
***	888	222	666		666	
Etaska 25	Etaaka 26	Etaaka 27	Daaka 28	Daaka 29	Etaaka 30	
Nanjini syasosha 14	Norybirymodati	Natylei syasoda 9	Naryini eyasocha 10	Naryini ryasoka 3	Nanyini syasocha 18	
	Byspa sibyaddela					
88	88	88	**		**	
Etaaka 17	Ebaska 18 Noroini romeda 1	Etaaka 19	Daaka 20	Etaaka 21	Etaaka 22	
Ibyapa ubyadda BB	Bryapa sibryakkela BB	ibyopa sibyoddda BB	ibyapa sibyadalah BB			
					66	
Daaka 9	Etaaka 10	Etaaka 11	Daaka 12	Dzaka 13	Etaaka 14	
	Noryini ryusuda 3		Naryini syasocha 17		Nanyini syasooha t	
Ebyapa sibyaddda		Hyspa skyaddda				
**	22	88	# #		44	
Etaaka 1	Etaaka 2	Etaaka 3	Etaaka 4	Etaaka 5	Etaaka 6	
				Narçini ryasında 13		

Experiment 1: Design Overview

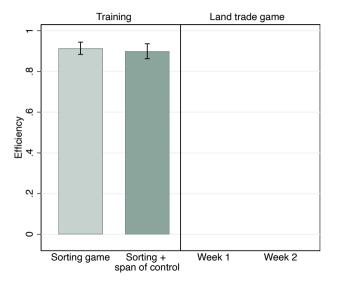
- Land-owning farmers from 68 villages in Masaka, Uganda
- Game:
 - 18 players
 - 3 plots each
 - Paper game currency
- Strong monetary incentives.
 - 1 day's wage showup fee
 - + up to 2.2 days' wages in trade
- Free-form bargaining over 7 days

Introduction

Analysis

Gains from trade scaled by total potential gains:

$$\mathsf{Efficiency} = \frac{\mathsf{Final welfare} - \mathsf{Initial welfare}}{\mathsf{First best welfare} - \mathsf{Initial welfare}} < 1$$

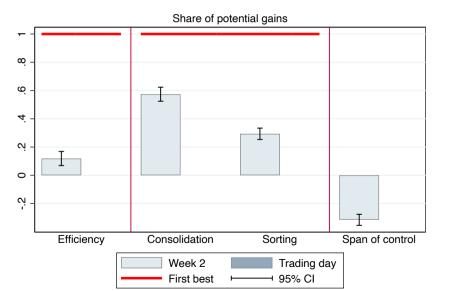

Decomposition:

 ${\sf Efficiency} = {\sf Consolidation} + {\sf Sorting} - {\sf Span \ of \ control}$

Introduction

Experiments

Result 1: Efficient trade is hard



Training games

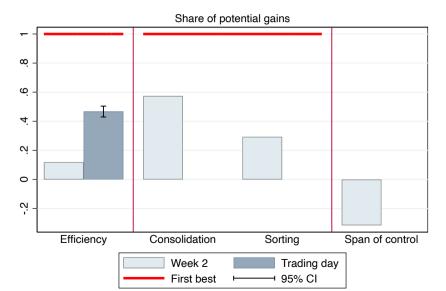
- Standard lab market game based on Chamberlin (1948)
- Market game with multiple "titles" and span of control

nts Inequality

Result 2: Some aspects are harder than others

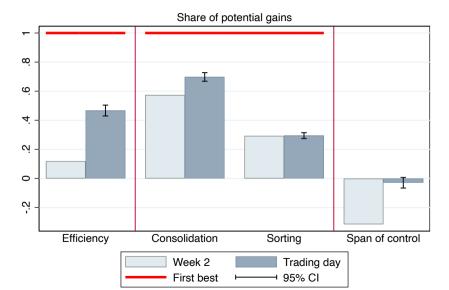
Most gains from Consolidation

Substantial losses to "Span of control" – people left with too much or too little land


Market centralization intervention

- After week 2 trade, a surprise market centralization intervention: "Trading Day"
- Everyone comes to the lab, given as much time as needed for additional trade

Centralization can help with all of the theoretical frictions


- By helping groups of individuals identify mutually beneficial sequences of trade
- By helping enforcement of chains

Result 3: Large efficiency gains from centralization

21

Result 4: Entirely driven by Consolidation and Span of control

Summary of findings

• 57% of potential defragmentation gains \rightarrow 70% in trading day

• 30% of potential sorting gains ightarrow no improvement in trading day.

• Large "span of control" losses \rightarrow eliminated in trading day.

Outline

1 Introduction

- 2 Validating the model
- **3** Why is efficient trade hard?

4 Experiments

Experiment 1: free-form versus centralized trade Experiment 2: computerized package exchanges


5 Inequality

6 Additional results

Inequality

Experiment 2: Design overview

- 48 sessions with land-owning farmers in Kiambu county, Kenya
- Selected from a census of local villages
- Game: 6 participants \times 2 plots each
- Session: eight 10-minute computerized "land auctions" (all paid)
- Incentives: \$3 show-up + \$4 average earnings pprox 1.5 days' wages

Inequality

Mechanisms

Three continuous double auctions with varying package size.¹

- CDA-Broker: Buy or sell one plot at a time.
 - E.g. "Buy plot 3 for at most 300"
- CDA-Swap: can also bid to buy and sell one plot.
 - E.g. "Buy plot 3 and sell plot 7, pay at most 50"
- CDA-Package: can also bid to buy and sell up to two plots
 - E.g. "Buy plots 9 and 10, sell plots 2 and 5, receive at least 200"
- Software searches for implementable trades & sets prices in continuous time. All treatments:
 - Centralized trade
 - "Bidding assistants" to operate software
 - Verbal communication
 - XOR bids

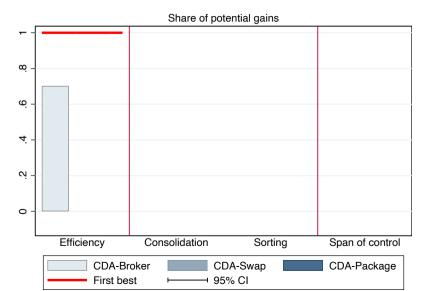
¹Inspired by Goeree & Lindsay (2017)'s housing exchange

Potential advantages of the package mechanism

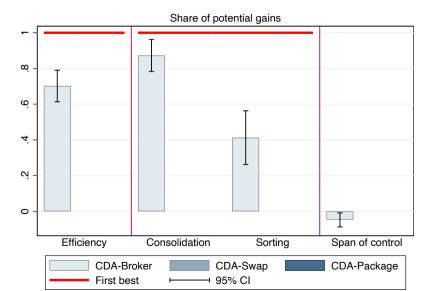
- 1 Thickens the market
- 2 Reduces exposure risk
- 8 Reduces transaction costs
- 4 Alleviates liquidity constraints



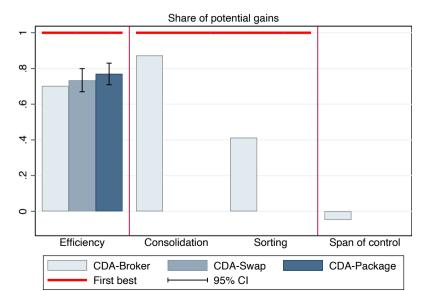
But...


- Bidding language is complex
- Space of potential packages is large
 - 20 sell-one-buy-one packages
 - 45 sell-two-buy-two packages
- Difficult to provide real-time feedback

Land A	Auction			Player 1									6
Туре	Single	Adj. Boni	18	You can	select either on	ie land	to sell or one	land to	buy.				
	400	160		Sub	mit a Bid								
	300	120		Sel	Sell Lots		Buy Lots		Total Price • Receive (at least)		ast)		
	200	80							O Pay (a		,	0 3	
Curren	nt Allocation												Submit
1	2 3 4	400	0										_
5	6 7 8	300	0	You	r current oper	n bids							
9	10 11 1	2 0	0		Sell Lots	¢	Buy Lots	¢	Price	¢	Current Profit ≑	Expected Profit ≑	Action
Cash: Total Prof	6a.	300 1000						N	o data avai	lable in t	able		
Alterna	ate Allocation Creset												
1	2 3 4	400	0										
5	6 7 8	300	0										
9	10 11 1	2 0	0										
Cash: 3	300	٥		_									
Total Prof	fit:	1000											



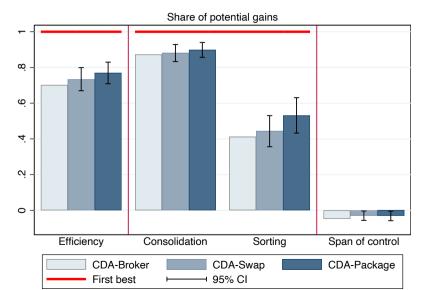
Result 5: High efficiency in benchmark treatment



30

Result 6: mostly from Consolidation

Result 7: Higher efficiency in package mechanisms



32

Experiments

Inequality

Result 8: Primarily driven by Sorting

Summary of findings

• High efficiency: 70% in CDA-Broker \rightarrow 77% in CDA-Package

• 87% of potential defragmentation gains \rightarrow 90% in CDA-Package

• 41% of potential sorting gains \rightarrow 53% in CDA-Package.

• Minimal "span of control" losses.

Experiments

Outline

1 Introduction

- 2 Validating the model
- **3** Why is efficient trade hard?

4 Experiments

Experiment 1: free-form versus centralized trade Experiment 2: computerized package exchanges

5 Inequality

6 Additional results

Inequality

- A significant potential concern: market design might exacerbate inequality.
- Particularly in complex mechanisms: sophisticates might profit at others' expense.²
- We compute the Atkinson Index of final assets (under log utility):

$$I^A = 1 - \exp\left(\sum_i (\ln y_i - \ln ar y)
ight)$$

- Significantly reduced by both market design interventions.
- · Seems to be primarily by reducing very bad outcomes

²Related concerns in school choice: Abdulkadiroglu et al. (2006); Pathak and Sönmez, (2008).

Experiments

Outline

1 Introduction

- 2 Validating the model
- **3** Why is efficient trade hard?

4 Experiments

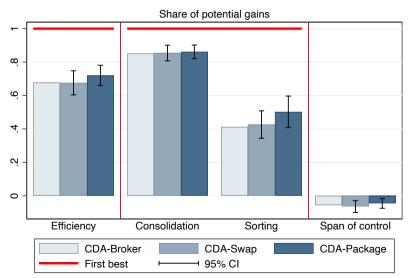
Experiment 1: free-form versus centralized trade Experiment 2: computerized package exchanges

5 Inequality

6 Additional results

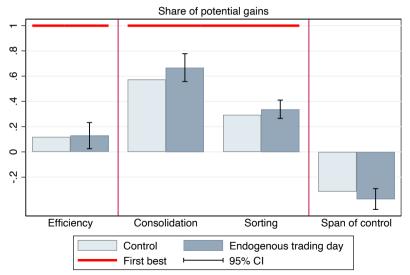
Additional results

- Can't households just centralize the market themselves? Endogenous Trading Day
 - They try to!
 - More Consolidation and Sorting, but bigger Span of Control losses. Zero net gain.
 - Conjecture: big difference between complete and partial centralization
- Role of holdouts Simple vs Complex
 - Many plots may never be for sale
 - Experiment 1 randomized "Complex" maps with holes, and "Simple" maps without.
 - Little effect on any dimension. Perhaps because we are still far from 1st best
- Role of liquidity constraints Low vs High Cash
 - Experiment 2 randomized initial cash balances (Low vs High)
 - Precise zero effects. Maybe constraint not tight enough.
- Role of communication

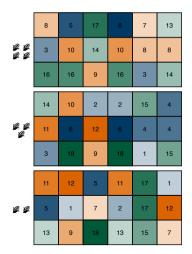

 Verbal bargaining
 - We allow verbal communication in all treatments.
 - Package exchange seems to crowd out verbal bargaining.

Conclusion

- We show the potential for implementable market design improvements to unlock gains from trade.
- Centralizing the land market eliminates losses to trade breakdown, helps with consolidation, but no impact on sorting.
- Package exchange mechanism can unlock sorting gains.
- No equity-efficiency tradeoff.
- Next step: field experiments.

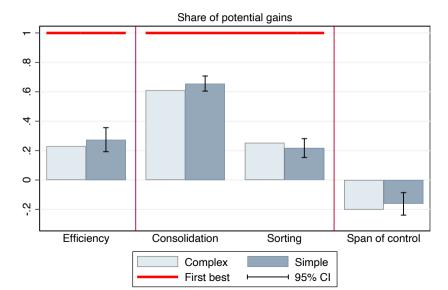

Appendix

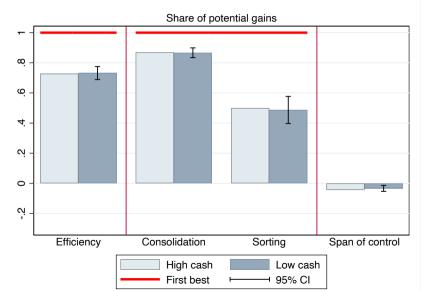
These regressions include block 1


Endogenous Trading Day • Back

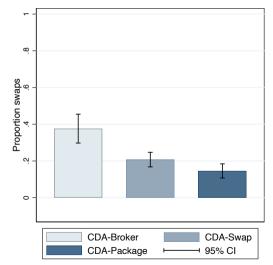
Note: these regressions include week 2 (pre trading day)

Simple versus Complex maps • Back


Simple map


Complex map

8	5	17	6	7	13	14	
3	10		10				8
16	16	9	16	3		14	8
14	10		2		15	9	4
11	6	12	2	6		4	4
3	18			18	1	15	
			11	17	1	11	12
5	1	7	2	17	12	7	5
13	9	18		13		15	



Low vs High Cash Back

	Centralization experiment	Package exchange experiment				
Mode of interaction	Free-form bargaining	Computerized trade				
Market design variation	Decentralized/Centralized trade	CDA-Broker/CDA-Swap/CDA-Package				
Other treatments	Simple/Complex maps	High/Low initial cash				
Number of players	18	6				
Number of tradable plots	54	12				
Span of control	3 plots	2 plots				
Land quality types	{Low, Med, H	igh} = {1, 1.5, 2}				
Farmer ability types	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Low $\{1, 1\}$ Med $\{1.5, 1.5\}$ High $\{2, 2\}$				
Value of a single plot	Land quality :	< Farmer ability				
Bonus for 2 adjacent plots	Farmer ability × 0.4	Land quality × Farmer ability × 0.4				
Initial cash balance	6	Low cash treatment 2.5 High cash treatment 7.5				
Information structure	Initial endowments are common knowle	edge, own values are private information.				
Verbal communication permitted?	Y	(es				
Potential efficiency gains from consolidation (% of first best)	50%	73.3%				
Debt	Initial assets – 1.75	None				
Incentives (per trading round)	8,000 UGX × (Final assets – Debt)	5 KES × Final assets				
Trading rounds	2 (plus "trading day")	8				
Duration of trading rounds	Free-form trade: 1 week Trading day: as much time as needed	10 minutes				

Table 1: Game parameters in the experiments

Notes: parameters have been normalized such that the average value of a low-quality plot held by a low-ability farmer is 1. Share of efficiency gains from consolidation/sorting varies by initial allocation. In the centralization experiment we selected initial allocations to target a 50-50 split.

				LSMS						
	Our sample			Buganda South			Uganda			
Demographics	mean	S.D.	obs	mean	S.D.	obs	mean	S.D.	obs	
Age	43.76	13.52	1404	40.12	17.41		39.11	17.48	3338	
Female	0.51		1404	0.56		224	0.51		3338	
Head of household	0.65		1404	0.42		224	0.38		3338	
Married: monogamous	0.63		1404	0.43		224	0.49		3338	
Married: polygamous	0.06		1404	0.09		224	0.11		3338	
Nr adults (inc respondent)	2.99	1.54	1404	2.40	1.25	96	2.60	1.27	1246	
Nr children in household	3.37	2.07	1404	3.13	2.07	96	2.97	2.13	1246	
Education										
Education (years)	7.16	3.21	1404	6.28	3.13	171	6.34	3.24	2551	
Numeracy	0.76		1224							
Farm size and income										
How many plots do you own and cultivate?	2.10	1.15	1404	1.70	0.89	96	1.69	0.93	1246	
Total land holdings cultivated (in acres)	2.95	3.32	1349	3.25	8.30	96	2.94	4.22	1244	
Income from agriculture (1000 UGX/season)	1482	2174	1349	1087	1921	81	897	1995	847	
Income from agriculture (USD PPP/season)	1365	2002	1349	1001	1770	81	826	1837	847	
Farming ability (self-evaluated, relative to be	est in vi	illage)								
Farmer's total production	0.47		1403							
Max farm size (w/o hired labor)	0.59		1403							
Preferences (1-5 scale)								GPS		
Patience	4.35	0.66	1404				3.52	1.17	1000	
Risk tolerance	4.09	0.90	1404				3.40	0.91	1000	

Table 24: Summary statistics: Buganda south and Ugandan farmers

▶ Back to Uganda

				DHS						
		Our sample			Kiambu			Kenya		
Demographics	mean	S.D.	obs	mean	S.D.	obs	mean	S.D.	obs	
Age	42.65	10.45		38.63	15.17			16.61		
Female	0.58		264			933			5153	
Married	0.77		264	0.65	4.00	933	0.63		5153	
Nr of people in household	4.06	1.71	264	3.57	1.93	429	4.31	2.48	2378	
Education										
Education (years)	9.75	2.94	264	9.96	3.65	932	8.01	4.23	5141	
Land tenure										
Owns two or more plots	0.22		264							
Total land ownership in acres	1.01	1.52	237	1.88	3.54	418	2.56	3.79	2323	
Land trade										
Fraction of plots with joint ownership	0.61		303							
Fraction of plots that are far from home	0.24		303							
Fraction of plots with a title	0.64		303							
Fraction who bought a plot (last 12 months) If has bought land: How many acres	0.05	1.42	264							
Fraction who sold a plot (last 12 months)	0.02	1.42	264							
If has sold land: How many acres	7.62	11.80	4							
Fraction of sales due to emergencies	0.40	11.00	5							
Consolidation										
How important is it to have all your plots to (1–10, 1 is better to have spread out)	gether?									
<u> </u>	0.43		264							
1 2 - 9	0.43		264 264							
10	0.08		264							
Why?			2.51							
Why fragment? Less risky	0.25		264							
Why consolidate? More productive	0.38		264							
Preferences (1–5)								GPS		
Risk tolerance	3.95	1.42	264				3.49	0.93	998	

Table 25: Summary statistics: Kiambu and Kenyan farmers

Back to Kenya